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ABSTRACT

Brain-inspired Hyperdimensional (HD) computing is a new comput-
ing paradigm emulating the neuron’s activity in high-dimensional
space. The first step in HD computing is to map each data point
into high-dimensional space (e.g., 10,000), which requires the com-
putation of thousands of operations for each element of data in
the original domain. Encoding alone takes about 80% of the ex-
ecution time of training. In this paper, we propose BRIC, a fully
binary Brain-Inspired Classifier based on HD computing for energy-
efficient and high-accuracy classification. BRIC introduces a novel
encoding module based on random projection with a predictable
memory access pattern which can efficiently be implemented in
hardware. BRIC is the first HD-based approach which provides
data projection with a 1:1 ratio to the original data and enables
all training/inference computation to be performed using binary
hypervectors. To further improve BRIC efficiency, we develop an
online dimension reduction approach which removes insignificant
hypervector dimensions during training. Additionally, we designed
a fully pipelined FPGA implementation which accelerates BRIC in
both training and inference phases. Our evaluation of BRIC a wide
range of classification applications show that BRIC can achieve
64.1x and 9.8% (43.8% and 6.1x) energy efficiency and speed up as
compared to baseline HD computing during training (inference)
while providing the same classification accuracy.
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1 INTRODUCTION

The emergence of the Internet of Things (IoT) has led to a copious
amount of small connected embedded devices. Many of these de-
vices need to perform classification tasks such as speech recognition,
activity recognition, face detection, and medical diagnosis [1, 2].
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However, these small embedded devices do not have the computing
power to run sophisticated classification algorithms such as Deep
Neural Networks(DNN) [3]. To resolve this, many devices send the
data they collect to the cloud and the cloud performs the inference
task, sending the result back to the embedded device. This leads to
new problems such as network usage and user security [4]. In order
to solve these new issues and still provide a way for these embed-
ded devices to perform classification tasks, we need a light-weight
classification algorithm that can achieve comparable accuracy to
sophisticated resource-intensive algorithms.

Brain-inspired Hyperdimensional (HD) computing has been pro-
posed as the alternative computing method that processes the cog-
nitive tasks in a more light-weight way [5]. HD computing is devel-
oped based on the fact that brains compute with patterns of neural
activity [5]. Recent research utilized high dimension vectors (e.g.,
more than a thousand dimension), called hypervectors, to repre-
sent the neural activities, and showed successful progress for many
cognitive tasks such as activity recognition, object recognition,
language recognition, and bio-signal classification [6-8]. HD com-
puting offers an efficient learning strategy without overcomplex
computation steps such as back propagation in neural networks.
In addition, it builds upon a well-defined set of operations with
random HD vectors which makes the learning model extremely
robust in the possible presence of hardware failures.

In HD computing, training data points are combined into a set
of hypervectors, called an HD model, through light-weight compu-
tation steps. Each hypervector in the model represents a class of
the target classification problem. Most of the proposed HD com-
puting work exploit binarized hypervectors to reduce the compu-
tational/memory intensity in HD computing [9, 10]. However, the
existing HD computing algorithms [9] have two main challenges: (i)
the encoding is computationally expensive, as it requires the compu-
tation of thousands (e.g., 10,000) of operations to map each element
of data from the original domain to high-dimensional space [8, 11].
For example, our experiments on five practical applications (de-
scribed in Section 6.1) show that in HD computing the encoding
module takes about 79% and 74% of the training and inference time.
(ii) In addition, HD computing using binary encoded vectors pro-
vides significantly lower classification accuracy. In other words,
HD computing requires non-binary (integer) vectors in order to
provide acceptable accuracy. However, working with non-binary
vectors significantly increases the memory requirement and the
computation complexity of training and inference.

In this paper, we propose BRIC, a fully binary Brain-Inspired
Classifier based on HD computing for energy-efficient and high-
accuracy classification. BRIC introduces a novel encoding module
based on random projection with a predictable memory access pat-
tern which can be efficiently implemented in hardware. In contrast
to existing HD computing algorithms that increase the size of en-
coded data by 20x [9], BRIC is the first HD-based approach which
provides data projection with a 1:1 ratio to the original data. In
addition, BRIC enables all training/inference computation to be
performed using binary hypervectors. The low memory require-
ment and computation cost makes BRIC a suitable candidate for
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Figure 1: Energy consumption of HD encoding, training, and

inference.
embedded devices with limited resources. To further i improve BRIC

efficiency, we developed an online dimension reduction approach
which removes insignificant hypervector dimensions during train-
ing. Additionally, we designed a fully pipelined FPGA implementa-
tion which accelerates BRIC in both training and inference phases.
Our evaluation on five practical classification applications, shows
that BRIC can achieve 64.1x and 9.8x (43.8X and 6.1x) energy effi-
ciency and speed up as compared to baseline HD during training
(inference) while providing the same classification accuracy.

2 RELATED WORK & MOTIVATION

Prior work tried to apply the idea of high-dimensional computing
to different classification problems such as language recognition,
speech recognition, face detection, EMG gesture detection, human-
computer interaction, and sensor fusion prediction [6, 8-10, 12-14].
For example, work in [11] proposed a simple and scalable alternative
to latent semantic analysis. Additionally, work in [8] proposed a
new HD encoding based on random indexing for recognizing a
text’s language by generating and comparing text hypervectors.
Work in [15] proposed an encoding method to map and classify
biosignal sensory data in high dimensional space. Work in [7, 9]
proposed a general encoding module that maps feature vectors into
high-dimensional space while keeping most of the original data.

Prior work also tried to design hardware acceleration for HD
computing by mapping its operations into hardware, e.g., in-memory
architecture [16-21], and tried to accelerate HD computing in hard-
ware by binarizing the class hypervectors [22] or removing dimen-
sions of the class hypervectors [23]. Work in [24] designed an FPGA
implementation to accelerate HD computation in the binary domain.
However, the application of these approaches is limited to simple
classification problems such as language recognition [8]. In order
to provide acceptable classification accuracy, all these approaches
have to train the model using non-binary (integer) vectors. How-
ever, using non-binary vectors requires a large memory footprint
and computation cost in both training and inference.

In this work, we observe that the existing encoding modules
are algorithmically and computationally inefficient. In addition,
in order to get high accuracy, the encoding needs to map data
into vectors with integer values which significantly increases the
data size [9, 10]. This large size memory is not often available on
embedded devices with limited resources. Figure 1 shows the en-
ergy consumption of encoding, training, and inference (associative
search) when running a single data point on five practical applica-
tions. Our evaluation shows that the encoding module on average
takes 4.7x and 3.8x higher energy than HD training and inference.
In this work, we propose a novel encoding approach that (i) sig-
nificantly reduces the encoding computation cost by introducing
computation locality and (ii) provides high classification accuracy
while mapping data into binary vectors with much lower dimen-
sionality than existing algorithms. Additionally, training can be
performed using encoded vectors in the binary domain. Our ap-
proach also simplifies the inference similarity check to Hamming
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Figure 2: Overview of how BRIC is constructed and how
BRIC performs inference.

distance with minimal quality loss as compared to the existing HD
computing algorithm with an integer model. We also propose a
fully pipelined FPGA implementation that accelerates a wide range
of classification problems during training and inference.

3 PROPOSED BRIC

In this paper, we propose BRIC, a novel framework for fully binary
classification. BRIC consists of three main modules shown in Fig-
ure 2: encoding, training, and testing. The encoding module maps
each data point to binary high-dimensional space. Our encoding
has been designed to map the maximum amount of information
to high dimensional space with the minimum computation cost.
Binarizing the model enables BRIC inference to be supported using
a low-cost Hamming distance similarity check. In the following,
we explain the details of BRIC functionality.

3.1 Encoding

Random Projection: Figure 2@} shows the overview of BRIC
performing the classification task. Before we can work in high
dimension space, we first need to encode the data to hypervectors.
We desire a fast and hardware-friendly algorithm that can take a
vector of real-valued data and generate a binary code such that the
encoding preserves the cosine similarity. Let us assume A, B € R"”
are two feature vectors in the original domain with real values. We
wish to define an encoding operation A(x) such that:
{X =AA),Y = A(B), X,Y € {1,-1}"}
6(A,B) = 6(X,Y)
where §(x) is the cosine similarity. Since the cosine angle of bi-
nary vectors is determined by how many bits match, the cosine
angle and Hamming distance are proportional. This type of encod-
ing can be performed using Locality Sensitive Hash algorithms,
such as Random Projection [25]. Let us assume a feature vector
F = {fi, f2,..., fn}, with n features (f; € N) in original do-
main. The goal of random projection is to map this feature vector
to a D dimensional space vector: H = {hy, hy,..., hp}. As Fig-
ure 3a shows, random projection generates D dense bipolar vectors
with the same dimensionality as original domain, {P1,P2,...,Pp},
where P; € {—1,1}". The inner product of a feature vector with
each randomly generated vector gives us a single dimension of a hy-
pervector in high-dimensional space. For example, we can compute
the i — th dimension of the encoded data as:
h; = sign(P; - F)

where sign is a sign function which maps the result of the dot prod-
uct to +1 or -1 values. This type of hashing involves a large amount
of multiplications/additions which is inefficient in hardware. For
example, to map a feature vector from n to D dimensions, this
encoding involves n X D multiplication and addition operations.



Sparse Random Encoding: The efficiency of random projec-
tion can be improved by sparsifying each projection vector. Instead
of generating dense projection vectors, we can generate sparse
projection vectors(Figure 3b). Consider s as a sparsity of each pro-
jection vector. Then, for each sparse projection vector, only s%
of the vector’s elements are randomly generated and the rest are
set to zero. For example, if s = 5%, each projection vector only
has 0.05 X n non-zero elements. Therefore, each dimension of the
encoded hypervector can be computed with only 0.05Xxn multiplica-
tion/addition operations. Therefore, encoding a single hypervector
takes s Xnx D multiplication/addition operations, compared to n XD
multiplication/addition operations with dense projection vectors.
Although the sparsity significantly reduces the number of arith-
metic operations, it introduces random accesses to the algorithm,
which is hard on the cache and slows down the computation.

Locality-based Sparse Random Projection: Here we propose
a novel approach that keeps the advantages of a sparse projection
matrix, i.e., fewer operations, while removing random accesses to
make the algorithm more hardware friendly. We propose a locality-
based random projection encoding that uses a predictable access
pattern. Instead of selecting s% random indices of the projection
matrix to be non-zero, we approximate sparse random projection
by selecting pre-defined indices to be non-zero. Figure 3¢ shows the
structure of the locality-based matrix. Our approach selects the first
s X n of the Py vector to be non-zero (indices [1...s X n]). Similarly,
Py projection vector only has s X n non-zero elements on indices
[2...s X n — 1]. Finally, Pp contains non-zero elements on the last
s X n dimensions. This creates a clear spacial locality pattern that
hardware accelerators can take advantage of.

Figure 4 shows the overview of BRIC encoding mapping each n
dimensional feature vector to a D dimensional binary hypervector.
BRIC simplifies the projection matrix to a single dense random pro-
jection vector with D bipolar values. Our approach first replicates
the feature vector, F, such that it extends to D dimensions, the same
as our desired high-dimensional vector. For example, to encode a
feature vector with n = 500 features to D = 4, 000 dimensions, we
need to concatenate 8 copies of a feature vector together. Then,
it generates a random D dimensional projection vector, P, next to
the extended feature vector (as shown in Figure 4). To compute
the dimensions of the high-dimensional vector, BRIC takes the dot
product of the extended feature vector with each projection vector
in an N-gram window. The first N-gram calculates the dot product
of the first N features and N projection vector elements:

hy =sign(fi #p1 + fa = p2 + ... + fN *PN)
Similarly, the N-gram window shifts by a single position to gen-

erate the next feature values. So, we can compute the it" dimension
of an encoded hypervector using:
hi = sign(fi = pi + fi+1 * piv1 + ... + firN * PitN)

Each step of the N-gram window corresponds to a multiplication
with a sparse projection vector in the projection matrix. Although
this encoding has the same number of computations as sparse ran-
dom projection, it provides the following advantages: (i) it removes
random accesses from the feature selection by introducing spacial
locality, which significantly reduces the cost of hardware imple-
mentation. (ii) There is an opportunity for computation reuse, as
every neighboring dimension shares N — 1 terms.

3.2 BRIC Training

Initial Training: Figure 2@ shows the functionality of BRIC dur-
ing training. In HD computing, training is performed by element-
wise addition of all encoded hypervectors in each existing class.
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Figure 3: Random projection encoding using dense, sparse,
and locality-based projection matrix.
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Figure 4: Locality-based random projection encoding,.

The result of training are k hypervectors with D dimensions, where
k is the number of classes. For example, the i*"* class hypervector
can be computed as: Ci = Ylyjcciass; Hj- This training operation
involves a large amount of integer additions, which makes the HD
computation costly [9]. Since our encoded hypervectors are bipolar,
this accumulation can be performed more efficiently with binary
accumulations. In BRIC, the resulting class hypervectors are also
binarized, creating a binary model, where the class hypervector
elements are changed to +1 if they are positive and -1 if they are
negative or 0. The binary model is used for more efficient inference,
however, the accumulated hypervectors are still stored as an integer
model because they will be used for retraining.

Retraining: HD computing performs model adjustment by iter-
atively going through the training dataset. Figure 2@ shows the
functionality of BRIC during retraining. During a single iteration
of model adjustment, HD computing checks the similarity of all
training data points, say H, with the trained binary model. If a data
is wrongly classified by the model, HD updates the model by (i)
adding the incorrectly classified hypervector to the class that input
belongs to (C¢0TT¢¢t = ceorrect 4 H) and (ii) subtracting it from
the class which it is wrongly matched with (CY"°"9 = CW"°"9 —H).
These updates are done to the integer model saved from training
because adding to and subtracting from the binary model would
drastically change the model. To update the binary model, the up-
dated class hypervectors from the integer model are sent to the
bipolar domain using the same Sign function used for training. Af-
ter each retraining iteration, we check the classification accuracy
in the last three iterations and decide to stop the retraining if the
change in error is less than 0.1% (Figure 2@ ). The retraining stops
after 20 iterations if the convergence condition is not satisfied.

3.3 BRIC Inference

After training and retraining, the HD model can now be used for
inference (Figure 2@®). Upon inference, an input data is encoded
to a query hypervector using the same encoding module used for
training. HD computing then compares the similarity of the query
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Figure 5: Online dimension reduction after initial training.

hypervector with all stored class hypervectors and selects the class
with the highest similarity. Since BRIC generates a binary model,
it uses Hamming distance metrics to find a class hypervector with
the most similarity to the query hypervector. Comparatively, the
existing HD computing algorithms [9] with integer models have to
use Cosine similarity for inference. This is significantly more com-
putationally expensive than Hamming distance, especially when
implemented with an FPGA.

4 ONLINE DIMENSION REDUCTION

Online feature reduction attempts to remove insignificant "noisy"
dimensions from the model to improve the efficiency of BRIC. In
order to identify these dimensions, BRIC uses the distribution of
the encoded training hypervectors. Figure 5 shows the distribution
of the training hypervector values. This data is gathered by adding
all the class hypervectors together after initial training.

The dimensions in which the data has high variation are closer
to 0 because a high variation implies an equal amount of +1 and
-1 accumulations. The dimensions in which the data has low varia-
tion will be farther than 0 because, the additions accumulate more
sequential 1’s or -1’s. We declare the dimensions close to 0 to be
"significant", while the dimensions farther away from zero to be
"insignificant". This is because to distinguish the classes from each
other, we want to emphasize their differences and not their simi-
larities. BRIC drops the s% most insignificant dimensions from the
model, resulting in a efficiency improvement of approximately s%.

5 FPGA ACCELERATION

BRIC can be accelerated on different platforms such as CPU, GPU,
FPGA or ASIC. FPGA is one of the best options as BRIC computa-
tion involves bitwise operations among long vector sizes. General
strategies of optimizing the performance of BRIC are (i) using a
pipeline and partial unrolling on low levels (dimension levels) to
speed up each individual task and (ii) using dataflow design on a
high level (task level) to build a stream processing architecture that
lets different tasks run concurrently. In the following, we explain
the functionality of BRIC in encoding, training, retraining, and
inference phases.

5.1 Encoding Implementation

As we explained in Section 3.1, we used the locality-based random
projection encoding to implement the encoding module. Due to
the sequential and predictable memory access patterns as well as
the abundance of binary operations, this encoding approach can be
implemented efficiently on an FPGA. In the hardware implementa-
tion, we represent all {—1, +1} values with {0, 1} respectively. This
enables us to represent each element of projection vector using a
single bit. Figure 6a shows the hardware implementation of the
BRIC encoding module. The encoding process includes reading a
feature vector from off-chip DDR memory and generating a binary
hypervector from them.
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Figure 6: FPGA implementation of the encoding and associa-
tive search block.

Calculating the inner product of a feature vector and a projection
vector, P € {1, —l}D , can be implemented with no multiplications.
Each element of the projection vector decides the sign of each
dimension of the feature vector in the accumulation of the dot prod-
uct. Thus, the dot product can be simplified to addition/subtraction
of the feature vector elements. Right after the encoding, the hyper-
vectors are used for initial model training. We also need to store
the encoded hypervectors for retraining. However, the FPGA does
not have enough BRAM blocks to store all encoded hypervectors,
so, our design stores them into DDR memory.

5.2 Training Implementation

Initial Training: BRIC initial training is a single-pass process. The
training module accesses the encoded hypervectors and accumu-
lates them in order to create a hypervector representing each class.
When the training module accumulates the encoded hypervector
to one of the class hypervectors, the encoding module maps the
next training data into high-dimensional space, improving data
throughput by increasing resource utilization. After going through
all of the training data, our implementation binarizes the model by
comparing each class hypervector with a threshold value. Finally,
the binary model is stored in the BRAM blocks in order to be used
for inference or retraining.

Retraining: The retraining phase first sequentially reads al-
ready encoded training hypervectors from the off-chip memory.
Next, we check the similarity of each data point with all trained
class hypervectors. Each data point gets a tag of a class which it has
the highest Hamming distance similarity with. Figure 6b shows an
overview of the implementation of the Hamming distance similarity
between a query and class hypervectors. This similarity check is
implemented using a XOR array which compares the bit similarity
between two hypervectors. Counter blocks, shown in Figure 6b,
calculate the number of mismatches of each class hypervector with
the query data point. Finally, a tree-based comparator block finds
the class with the highest counter value. In the case of a misclassifi-
cation, BRIC needs to update the model by adding and subtracting
a data hypervector with two class hypervectors as defined before.

5.3 Inference Implementation

After the retraining, BRIC has a stable model that can be used
in the inference phase. The encoding module is integrated with
the similarity check module as the entire inference part. Each test
data point is first encoded to high-dimensional space using the
same encoding block explained in Section 5.1. Next, BRIC checks
the Hamming distance similarity of the data point with all pre-
stored class hypervectors, in order to find a class with the highest
similarity. One unique advantage of our approach is its capability to
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enable online training during inference phase. Our implementation
stores two HD models: one with integer values used for retraining
and a binary model which is used to perform the classification task.
BRIC binarizes the integer model periodically in order to update
the inference model.

6 EVALUATION

6.1 Experimental Setup

We implemented BRIC training, retraining, and inference in both
software and hardware. In software, we implemented BRIC with
Python. In hardware, we fully implemented BRIC using Verilog. We
verify the timing and the functionality of the models by synthe-
sizing them using Xilinx Vivado Design Suite [26]. The synthesis
code has been implemented on the Kintex-7 FPGA KC705 Evalua-
tion Kit. We evaluated the efficiency of the proposed BRIC on four
practical classification problems listed below: Speech Recognition
(ISOLET) [27], Activity Recognition (UCIHAR) [28], Face Detec-
tion (FACE) [29], Cardiotocography (CARDIO) [30], and Attack
Detection in IoT systems (IoT) [31].

6.2 BRIC Accuracy and Memory Requirement

Figure 7 compares the impact of hypervector dimensions on the
classification accuracy of BRIC and the baseline HD computing
algorithm [9]. As we explained, BRIC always encodes data points
into D binary dimensions. However, for the baseline HD computing
algorithm, we consider two cases when HD encodes data points
to binary and integer domains. Our results in Figure 7 indicate
that BRIC requires significantly fewer dimensions to provide the
same accuracy as the baseline. For example, BRIC using D = 4,000
binary dimensions provides the same accuracy as the baseline with
D = 10,000 integer dimensions. In addition, the baseline with a
binarized model provides significantly lower accuracy than BRIC
and the baseline with an integer model. BRIC is on average 11.5%
more accurate than the baseline using a binary encoding and binary
model.

Here we compare BRIC and the baseline in terms of the training
memory requirement. As we explained in Section 3.2, the base-
line/BRIC store all encoded training data in memory. Going into
high dimensional space intuitively means increasing the data size,
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and the baseline HD running (a) a single retraining iteration,

and (b) a single query at inference.

since we map each feature vector from n into D dimensional space,
where D >> n. Let us assume a feature vector with n = 500 integer
features. For the baseline with integer values, the data size increases
by approximately 20X. Even the baseline with a binary encoding
(D = 10, 000) increases the data size by 2.5%, while it provides much
lower accuracy. In contrast, the proposed BRIC encodes data points
to much lower dimensionality, e.g., D = 4000, in order to provide
the same accuracy as the baseline. Our evaluation shows that BRIC
can ensure 1:1 ratio of high-dimensional data to original data, while
providing the same accuracy as baseline HD [9], proving that BRIC
is more capable to run on embedded devices with limited memory.

6.3 Hardware Efficiency

We compare the efficiency of BRIC with the state-of-the-art HD
computation algorithms on a Kintex-7 FPGA. To have a fair compar-
ison, we consider an optimized implementation of the baseline [9],
running on the same architecture as BRIC (explained in Section 5).

Encoding & Training: Due to the predictable memory access
pattern and lower BRIC dimensionality, BRIC encoding can process
with higher efficiency as compared to the baseline. For instance,
to get maximum accuracy, the baseline needs to work with D =
10,000 dimensionality while BRIC can provide the same accuracy
with D = 4,000. Figure 9 shows the scalability of BRIC and the
baseline efficiency to the feature size. Our evaluation shows that
the execution time of the baseline increases with the number of
features, while it takes the same time for BRIC to encode any size
feature vector. For applications with 600 features, BRIC provides
282x more energy efficiency and a 22.7x speed up as compared to
the baseline.

In training, in order to create class hypervectors, the baseline
accumulates integer hypervectors, while BRIC training accumulates
binary hypervectors. Figure 8 compares the energy consumption



Table 1: Change in classification accuracy due to online di-
mension reduction.

Dimension Reduction ‘ 20% 40%  60% 70% 80% 90%

FACE +0.8% +0.1% 0% -02% -13% -41%
CARDIO +0.2% 0% 0% -04%  -14% -1.4%
ot +0.3% +0.1% 0% -141% -16.5% -21.9%
UCIHAR +0.6% -0.1% -0.8% -1.2% -21% -54%
ISOLET 0% -04% -1.9% -4.6%  -6.9% -15.2%

and execution time of BRIC and the baseline during initial training.
The results are reported when both designs encode and train the
model in a pipeline structure. For the baseline, encoding dominates
the execution time, thus the training execution hides under the
encoding module. However, in BRIC, the encoding can process
faster than the training, thus the training is the bottleneck of the
execution time (as it is shown in Figure 8). Our evaluation shows
that BRIC can provide 64.1x more energy efficiency and a 9.8x
speed up as compared to the baseline during training.

Retraining/Inference Efficiency: BRIC stores all encoded hy-
pervectors in order to perform iterative retraining. The existing
HD computing algorithms map data points to integer values, where
each encoded data is around 20 times larger than the data in the
original domain. During retraining, the FPGA needs to sequentially
access the encoded values which are pre-stored on off-chip memory.
The limited memory bandwidth between the off-chip memory and
the FPGA BRAM blocks significantly slows down the baseline com-
putation during retraining. In contrast, BRIC maps the training data
to lower dimensions, where each dimension can be represented
using a binary value. This enables BRIC to speed up the retraining
by loading hypervectors faster than the baseline.

During inference and retraining, HD checks the similarity of
each encoded hypervector with all existing class hypervectors. To
achieve a high classification accuracy, the existing HD computing
algorithms generate an integer model. Therefore, they require the
use of an expensive similarity metric such as cosine to find the most
similar class. In contrast, BRIC performs the similarity check with
hamming distance. Figure 10 shows the energy consumption and
execution time of the FPGA accelerating a single retraining iteration
and a single query during inference. The results show that BRIC
can achieve on average a 61.6x energy efficiency improvement
and a 7.9% speed up as compared to the existing HD computation
algorithms. Similarly, in inference, the FPGA implementation of
BRIC can achieve on average a 43.8x energy efficiency improvement
and a 6.1X speed up running a single query (Figure 10b).

6.4 Online Dimension Reduction:

Table 1 shows the impact of the dimension reduction on the BRIC
classification accuracy. Our results indicate that dropping 20% of
noisy dimensions improves the BRIC accuracy by enabling the
model to be retrained based on "significant” dimensions. Further
dropped dimensions may result in removing useful information. As
listed in Table 1, dropping a larger ratio of dimensions, e.g., 60% of
dimensions, results in a 2% quality loss in BRIC accuracy for one
of the applications. Online dimension reduction improves BRIC
efficiency linearly during both retraining and inference. For exam-
ple, a 40% dimension reduction results in a 37% energy efficiency
improvement and a 29% speed up while providing less than 0.5%
quality loss as compared to BRIC with full dimensionality.

7 CONCLUSION

In this paper, we propose BRIC, a novel HD computing framework
that significantly improves the computation efficiency. BRIC ex-
ploits the predictable memory access of our proposed encoding
to design an efficient encoding approach which maps data to a

binary hypervector. BRIC enables binary training and retraining
on the encoded hypervectors and simplifies the inference similar-
ity metric to Hamming distance. We additionally, implemented a
dimension reduction technique that removes unnecessary dimen-
sions to further improve the efficiency of BRIC. We also designed
a fully pipelined FPGA implementation to accelerate BRIC. Our
evaluations show that BRIC can achieve 64.1x and 9.8 (43.8X and
6.1X) energy efficiency and speed up as compared to the baseline
during training (inference) while providing the same classification
accuracy.
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